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Introduction Incompressible Navier-Stokes equations

Conservation and dissipation

Kinetic energy K, enstrophy E , helicity H:

K =
1

2
⟨u, u⟩Ω , E =

1

2
⟨ω,ω⟩Ω , H = ⟨u,ω⟩Ω .

Mass conservation: ∇ · u = 0

Given a conservative external body force f ,

Kinetic energy conservation and dissipation:

In inviscid case ν = 0,
dK
dt

= 0; in viscous case ν ̸= 0,
dK
dt

= −2νE .

Helicity conservation and dissipation (or generation):

In inviscid case ν = 0,
dH
dt

= 0; in viscous case ν ̸= 0,
dH
dt

= −2ν ⟨ω,∇× ω⟩Ω.
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Introduction de Rham complex

Dual field: Hilbert spaces

R �
�

// H1(Ω)
∇ //

OO

⋆

��

H(curl; Ω)
∇×
//

OO

⋆

��

H(div; Ω)
∇· //

OO

⋆

��

L2(Ω) //
OO

⋆

��

0

0 L2(Ω)oo H(div; Ω)
∇·oo H(curl; Ω)

∇×
oo H1(Ω)

∇oo R? _oo

Figure: A double de Rham complex of Hilbert spaces.
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Introduction MEEVC

MEEVC [1]

”A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D
incompressible Navier-Stokes equations” [1]

A system of two evolution equations are used in MEEVC scheme:

∂u

∂t
+ ω × u + ν∇× ω +∇P = 0,(1a)

∂ω

∂t
+

1

2
(u · ∇)ω +

1

2
∇ · (uω) = ∆ω,(1b)

∇ · u = 0.(1c)

author (institute) meeting name date 5 / 10



Discretization Temporal discretization

Staggered temporal discretization

Figure: caption
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Discretization Temporal discretization

Dissipation properties after temporal discretization

Given a conservative external body force, when ν ̸= 0, by repeating aforementioned analysis, one now can find
that kinetic energy dissipates at the rate

Kk+ 1
2

1 −Kk− 1
2

1

∆t
= −ν

〈
ω

k− 1
2

2 + ω
k+ 1

2
2

2
,
ω

k− 1
2

2 + ω
k+ 1

2
2

2

〉
Ω

= −2νEk
2 ≤ 0,

Kk
2 −Kk−1

2

∆t
= −ν

〈
ωk−1

1 + ωk
1

2
,
ωk−1

1 + ωk
1

2

〉
Ω

= −2νEk+ 1
2

1 ≤ 0.

And helicity dissipates or generates at the rate:

Hk
1 −Hk−1

1

∆t
=

Hk
2 −Hk−1

2

∆t
= −ν

〈
∇× ω

k− 1
2

1 ,ω
k− 1

2
2

〉
Ω

− ν

〈
ωk

2 ,∇× ωk
1

〉
Ω
+

〈
ωk−1

2 ,∇× ωk−1
1

〉
Ω

2
.
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Discretization Spatial discretization

Mimetic spatial discretization

In order to ensure the conservation at the fully discrete level, finite dimensional function spaces employed for the
spatial discretization need to form a discrete de Rham complex [2],

R ↪→ H1(Ωh)
∇−→ H(curl; Ωh)

∇×−→ H(div; Ωh)
∇·−→ L2(Ωh) → 0,

We called these spaces structure-preserving or mimetic spaces.

✓ Once this is the case, the proofs for the conservation properties and the derivations for kinetic energy
dissipation and helicity dissipation (or generation) at the semi-discrete level must hold at the fully discrete level.
□

We have used the mimetic polynomial spaces as our mimetic spaces for the tests.
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Tests

Test 2: Manufactured convergence test

In periodic unit cube Ω := [0, 1]3, we use

u = {(2− t) cos(2πz), (1 + t) sin(2πz), (1− t) sin(2πx)}T

and
p = sin(2π(x + y + t))

as exact solutions (ω and f then can be calculated) and compute the flow from t = 0 to t = 2 and measure the
error at t = 2.
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